66 research outputs found

    Continuous close-range 3D object pose estimation

    Full text link
    In the context of future manufacturing lines, removing fixtures will be a fundamental step to increase the flexibility of autonomous systems in assembly and logistic operations. Vision-based 3D pose estimation is a necessity to accurately handle objects that might not be placed at fixed positions during the robot task execution. Industrial tasks bring multiple challenges for the robust pose estimation of objects such as difficult object properties, tight cycle times and constraints on camera views. In particular, when interacting with objects, we have to work with close-range partial views of objects that pose a new challenge for typical view-based pose estimation methods. In this paper, we present a 3D pose estimation method based on a gradient-ascend particle filter that integrates new observations on-the-fly to improve the pose estimate. Thereby, we can apply this method online during task execution to save valuable cycle time. In contrast to other view-based pose estimation methods, we model potential views in full 6- dimensional space that allows us to cope with close-range partial objects views. We demonstrate the approach on a real assembly task, in which the algorithm usually converges to the correct pose within 10-15 iterations with an average accuracy of less than 8mm

    SkiROS2: A skill-based Robot Control Platform for ROS

    Full text link
    The need for autonomous robot systems in both the service and the industrial domain is larger than ever. In the latter, the transition to small batches or even "batch size 1" in production created a need for robot control system architectures that can provide the required flexibility. Such architectures must not only have a sufficient knowledge integration framework. It must also support autonomous mission execution and allow for interchangeability and interoperability between different tasks and robot systems. We introduce SkiROS2, a skill-based robot control platform on top of ROS. SkiROS2 proposes a layered, hybrid control structure for automated task planning, and reactive execution, supported by a knowledge base for reasoning about the world state and entities. The scheduling formulation builds on the extended behavior tree model that merges task-level planning and execution. This allows for a high degree of modularity and a fast reaction to changes in the environment. The skill formulation based on pre-, hold- and post-conditions allows to organize robot programs and to compose diverse skills reaching from perception to low-level control and the incorporation of external tools. We relate SkiROS2 to the field and outline three example use cases that cover task planning, reasoning, multisensory input, integration in a manufacturing execution system and reinforcement learning.Comment: 8 pages, 3 figures. Accepted at 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Integrating Mission and Task Planning in an Industrial Robotics Framework

    Get PDF
    This paper presents a framework developed for an industrial robotics system that utilises two different planning components. At a high level, a multi-robot mission planner interfaces with a fleet and environment manager and uses multiagent planning techniques to build mission assignments to be distributed to a robot fleet. On each robot, a task planner automatically converts the robot's world model and skill definitions into a planning problem which is then solved to find a sequence of actions that the robot should perform to complete its mission. This framework is demonstrated on an industrial kitting task in a real-world factory environment

    Integrating mission, logistics, and task planning for skills-based robot control in industrial kitting applications

    Get PDF
    This paper presents an integrated cognitive robotics systemfor industrial kitting operations in a modern factory setting.The robot system combines low-level robot control and execution monitoring with automated mission and task planning,and a logistics planner which communicates with the factory’smanufacturing execution system. The system has been implemented and tested on a series of automotive kitting problems,where collections of parts are picked from a warehouse anddelivered to the production line. The system has been empirically evaluated and the complete framework shown to besuccessful at assembling kits in a small factory environment

    The 2016 Italian seismic hazard model

    Get PDF
    The Italian reference seismic hazard model was released in 2004, but it has been adopted for the definition of seismic zones in 2006 and for building code only in 2009. At the beginning of 2015 the Seismic Hazard Center (CPS) of INGV was commissioned to coordinate the national scientific community with the aim of elaborating a new reference seismic hazard model, mainly finalized to the update of seismic code. The CPS designed a roadmap to release within 2 years a significantly renewed model, with regard both to the updated input elements and to the strategies to follow, in order to obtain a shared and largely accepted PSHA. The main requirements of the model were discussed in meetings with the experts on earthquake engineering. A public call was opened according to a transparent procedure; we received 24 proposals from many national institutions. The activities were organized in 6 tasks: project coordination, input data, seismicity models, ground motion prediction equations, computation and rendering, validation. In the first phase, the working groups of each task worked separately; in the second phase of the project they collaborated to release a final model. During the project, many scientific aspects were carefully considered, as in many other seismic hazard projects: the use of a declustered catalogue versus a non declustered one, the adoption of the logic-tree approach instead of an ensemble modeling, the definition of objective strategies to assign the weight to each single model, and so on.PublishedSantiago Chile5T. Modelli di pericolosità sismica e da maremot

    Decomposing DInSAR Time-Series into 3-D in Combination with GPS in the Case of Low Strain Rates: An Application to the Hyblean Plateau, Sicily, Italy

    Get PDF
    Differential Interferometric SAR (DInSAR) time-series techniques can be used to derive surface displacement rates with accuracies of 1 mm/year, by measuring the one-dimensional distance change between a satellite and the surface over time. However, the slanted direction of the measurements complicates interpretation of the signal, especially in regions that are subject to multiple deformation processes. The Simultaneous and Integrated Strain Tensor Estimation from Geodetic and Satellite Deformation Measurements (SISTEM) algorithm enables decomposition into a three-dimensional velocity field through joint inversion with GNSS measurements, but has never been applied to interseismic deformation where strain rates are low. Here, we apply SISTEM for the first time to detect tectonic deformation on the Hyblean Foreland Plateau in South-East Sicily. In order to increase the signal-to-noise ratio of the DInSAR data beforehand, we reduce atmospheric InSAR noise using a weather model and combine it with a multi-directional spatial filtering technique. The resultant three-dimensional velocity field allows identification of anthropogenic, as well as tectonic deformation, with sub-centimeter accuracies in areas of sufficient GPS coverage. Our enhanced method allows for a more detailed view of ongoing deformation processes as compared to the single use of either GNSS or DInSAR only and thus is suited to improve assessments of regional seismic hazard

    SkiROS:A four tiered architecture for task-level programming of industrial mobile manipulators

    Get PDF
    During the last decades, the methods for intuitive task level programming of robots have become a fundamental point of interest for industrial application. The paper in hand presents SkiROS (Skill-based Robot Operating System) a novel software architecture based on the skills paradigm. The skill paradigm has already been used and tested within the FP7 project TAPAS, and we are going to use it in several new FP7 projects (CARLOS, STAMINA, ACAT). It facilitates task-level programming of mobile manipulators by providing the robot with a set of movement primitives, skills and tasks. This hierarchy brings many advantages, where the most relevant is the separation of control in the layers of hardware abstraction(proxy), multi-sensory control(primitive), object-level abstraction (skill) and planning (task). The definition and the clear division in different abstraction levels allows the implementation of a flexible, highly modular system for the development of cognitive robot tasks
    corecore